Vocabulary

Number	 Subtraction	Multiplication \& Division	Fractions	Measurement	Geometry	Statistics
numeral	altogether	multiply	equivalent	distance apart/ between	parallel/ perpendicular	represent
digits	tens boundary	dividing	numerator	perimeter	line of symmetry	diagram
ones/ tens/ hundreds/ thousands	hundreds boundary	factor	denominator	millimetre/ centimetre/ kilometre	North/East/ South/West	most/least popular
rounding	left over	product	sharing	centigrade	prism	Carroll diagram
approximate	take away	groups of	sixths	a.m/p.m.	vertex	Venn diagram
compare	equivalent	remainder	tenths	earliest/	fatest	face

Order for learning the times tables

Step 1
Fire just $1 \times 6,2 \times 6,5 \times 6,10 \times 6$ at them first.
This will build up on their most secure existing table facts

Step 2
Add in $3 \times 6,4 \times 6$ when step 1 is frequently recalled correctly and instantly

Step 3
Build up with $6 \times 6,7 \times 6,8 \times 6$

Step 4
When looking at $9 \times 6,11 \times 6$ and 12×6, children should look at finding 10×6 and adjust

When they're ready, add in related division facts.

CPA approach to: Subtraction

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	 Darw representations to support understanding	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	45 $\frac{.29}{16}$ Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Then move to formal method.

CPA approach to: Addition

CPA approach to: Multiplication

 Strategy	Concrete	Pictorial	Abstract
Grid method	Show the links with arrays to first introdure the orid methnd Move onto base ten to move towards a more compact method. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

CPA approach to: Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems.	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{aligned} \mathrm{Eg} 15 \div 3 & =5 & & 5 \times 3=15 \\ 15 \div 5 & =3 & & 3 \times 5=15 \end{aligned}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over Example without 40 - 5 Ask "How many Example with re $38 \div 6$ For larger numbe jumps can be rec	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. (:) (:) Use bar models to show division with remainders. remainder: $5 s$ in $40 ?^{\circ}$ mainder. rs, when it becomes inefficient to count in single mu orded using known facts.	Complete written divisions and show the remainder using r . $$ fives a remainder of 2 ultiples, bigger

