Vocabulary

Number	 Subtraction	Multiplication \& Division	Fractions	Measurement	Geometry	Statistics
numeral	sum	groups of	equivalent	gram/ kilogram	surface	pictogram
digits	more/less	times	numerator	minute/hour	line of symmetry	tally
ones/tens/ hundreds	tens boundary number	repeated addition	denominator	estimate	face	histogram
sequence	bultiple bonds	sharing	contains	edge	graph	
greater than/less than	add	array	thirds	digital clock	vertex	represent
place value	subtract	row/column	halves	analogue	clock	vertices

Order for learning the times tables

Step 1

Fire just $1 \times 6,2 \times 6,5 \times 6,10 \times 6$ at them first.
This will build up on their most secure existing table facts

Step 2
Add in $3 \times 6,4 \times 6$ when step 1 is frequently recalled correctly and instantly

Step 3
Build up with $6 \times 6,7 \times 6,8 \times 6$

Step 4
When looking at $9 \times 6,11 \times 6$ and 12×6, children should look at finding 10×6 and adjust

When they're ready, add in related division facts.

CPA approach to：Addition

Objective \＆ Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	$50=30=20$ Model using dienes and bead strings	$\begin{gathered} 3 \text { tens }+5 \text { tons }=\ldots \text { tens } \\ 30+50= \end{gathered}$ Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} \square+\square=20 \\ \square+\square=20 \\ \square+\square=\square \\ \square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square} \square=\square_{\square} \square_{\square^{\square}} \\ & \square \square \square+\square \square \square \end{aligned}$	Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to make＇magic ten Children explore the pattern． $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$
Add a 2 digit num－ ber and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2－digit numbers	(A) Model using dienes，place value counters and numicon	 Use number line and bridge ten using part whole if necessary．	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1－digit numbers	 Combine to make 10 first if possible，or bridge 10 then add third digit	$b^{+}+\operatorname{rif}^{\infty}+\cos ^{8}$ Regroup and draw representation．	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make／ bridge ten then add on the third．

CPA approach to: Subtraction

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & 333 \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

CPA approach to: Division

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of tne dar as a wnoie. split it into the number of groups you are dividing by and work out how many would be within each group. 20 \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

CPA approach to: Multiplication

 Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=\square$
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 0000 0000	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\left\lvert\, \begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}\right.$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

